
THE EFFECT OF DIGITIZING NOISE 

ON SPECTRAL SIGNAL TO NOISE RATIOS 

IN FOURIER SPECTROSCOPY 

BY 
Michael L. Forman 

September 1966 

~~~ 

X-622-66 -4 78 

GODDARD SPACE FLIGHT CENTER 
Greenbelt, Maryland 



THE EFFECT OF DIGITIZING NOISE 

ON SPECTRAL SIGNAL TO NOISE RATIOS 

IN FOURIER SPECTROSCOPY 

BY 
Michael L. Forman 

ABSTRACT 

A discussion of digitizing noise and its effect on spectral sig- 
nal to noise ratios subject to the limitations of the telemetry sys- 
tem forms the main body of this study. Simulated and actual test 
data are compared with the theoretical calculations and an optimum 
working code is derived. The code used in the Nimbus B Infrared 
Interferometer Spectrometer i s  found to  be very close to the opti- 
mum condition for the number of bits used per data word. 
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THE EFFECT O F  DIGITIZING NOISE 
ON SPECTRAL SIGNAL TO NOISE R4TIOS 

IN FOURIER SPECTROSCOPY 

I. INTRODUCTION 

The purpose of this study is to determine the number of bits necessary to 
represent each data point of the record sent by the Infrared Interferometer 
Spectrometer (IRIS) instrumentation such that the signal to noise ratio in the 
spectrum due to digitizing effects is kept to a minimum, and that the number of 
bits per word is such that the total number transmitted stays within existing 
telemetry limits. The study will be conducted in two parts;  a theoretical descrip- 
tion of the effect, and computer simulation for a test  spectrum which consists 
of emission and absorption lines. A study of thermal or  random noise effects 
is also included in combination with the digitizing noise. 

The primary instrument in the IRIS experiment is a Michelson interferometer 
which produces a record from which it is possible to  obtain a spectrum of a 
source by calculating the Fourier transform of the record which is recorded a s  
a function of time or  distance. This method of obtaining a spectrum known a s  
Fourier spectroscopy and techniques for this a re  discussed extensively in the 
literature.@@ In this study, we are primarily concerned with the types of noise 
on this record, and how the noise transforms in the spectrum. 

The two types of noise that are most common on the recording (henceforth 
called the interferogram) are  (1) detector noise due to electron movement within 
the detector and which is a function of temperature, but not a function of incident 
radiation, and (2) digitizing or quantum noise which is caused by sampling the 
amplitudes at discrete levels. The latter is a function of the analog to digital 
system used, and on ground is not a serious problem since five o r  six place 
decimal A to D converters a r e  available, however, on satellites a restriction on 
the accuracy is imposed by the telemetry system. For instance, with the present 
Nimbus B system, the IRIS telemetry has a transmission rate of 3.75 kilobits 
per  second. For an 11 second scan and 3408 words, this yields 12  b?;ary bits 
pe r  word of which 4 bits used a r e  for housekeeping. Hence, one is limited to 
sampling 256 descrete levels of voltage. The round off e r ro r  due to this arrange- 
ment may be considerable even if one has a noiseless detector. This e r ro r  es- 
sentially introduces noise on the interferogram of a type similar to that of the 
detector which is assumed to be white noise. 
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11. NOISE THEORY 

We now consider the question of the computation of the signal to noise ratio 
in the spectrum for a given signal to noise ratio in the interferogram. The ex- 
pression to  be derived makes the assumption that the noise in the interferogram 
is uncorrelated to  the signal. 

The autocorrelation theorem for aperiodic functions is 

where F( a )  is the Fourier transform of f ( t ) and is related by the transform 
pairs 

and 

m 

- f ( x )  - ei2mrx dc . 

In the above notation f ( x )  corresponds to  the interferogram or noise record 
or  a linear combination of the two, and F(a) is the complex spectrum assuming 
f ( x )  is real. From Equation (2b) the following property may be deduced: 
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- 
which means that the amplitude of the interferogram at zero path-difference is 
equal to the total spectral intensity. Also, from Equation (1) at 7- = 0 we obtain 

which states that the square of the interferogram equals the square of the 
spectrum, that is, the energy densities of the two a r e  equal. Assuming finite 
limits and discrete sampling with distance or  time at about the Nyquist rate 
of two samples per highest frequency ( A ) ,  we can write 

N 

f 2 ( x ) d x  A f 2 ( i A )  
i= -N 

. -  

where dx - A ,  X = N A ,  w,,, = l / A ,  do- l /NA, and Equation (4a) becomes 

The sums over i and j are  the mean square values of the interferogram 
and spectrum respectively. Considering only a noise record and using n: and 
n:for the mean square values, we can write 

"s  = "I dE (5) 
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where nI and ns are the root mean square values of the recorded noise and its 
transform respectively. 

- 

- 
We can define the signal to  noise ratio in the interferogram as the peak 

signal (which occurs at zero retardation) divided by the r m s  noise in the inter- 
ferogram. For the spectral domain we can consider an average signal s which 
is the total spectral intensity divided by the spectral bandwidth. Referring to  
Equation (3) 

where m S  is the number of resolved spectral elements in the spectral bandwidth, 
hence the signal t o  noise ratio in the spectrum becomes 

Equation (7) assumes that the noise and spectral bandwidths are equivalent. If 
the noise bandwidth is greater than the spectral bandwidth, Equation (7) becomes 

where Mn is the number of resolvable elements in the noise bandwidth. The 
above assumes unity gain in the electronics hence, if we have a gain Cy the peak 
signal becomes 

2m SG - - .  
NA f , ( O )  = f ( 0 ) C  - 

The mean square noise on the interferogram may be considered to  be the 
sum of the mean square values of the digitizing and detector noise respectively, 
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- since they are uncorrelated. A s  the gain affects only the detector noise we obtain 

. -  

"1 = in- 

where n 1  and n ,  are the digitizing and detector noise respectively. With this 
assumption Equation (5) becomes 

If one observes a source with very few lines, G will be large, hence 
ns % G n 2 f m .  UsingEquation (6b), the average spectral signal will be 

and 

If n1 is larger than Gn, as may be the case for a many lined o r  ,road spectral 
source, ns  n1 fm (the case for no gain) and 

For  the case where n1 2 Gn2we have 
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In practice we attempt to keep n1 less than Cn,. As can be seen from 
Equation ( lo) ,  a factor of two yields about a 10% e r r o r  in the estimated spectral 
signal to  noise ratio. 

- 

- 

111. A MODEL FOR DIGITIZING NOISE 

In practice, the number of binary bits per data word limits the number of 
quantizing levels. Let K = 2k be the number of levels and 2f( 0) be the peak 
voltage. This latter is due to the fact that f (  x)  may be positive or  negative 
with a maximum value of I f (0) l  . Let V (jEo) be the assigned value for f (  x )  if 
j E, < f ( x)  5 ( j f 1 ) Eo j = 0, 1, . . . , K - 1, where 2Eo 
shown in Figure la.  

2f ( O)/K . This is 

For the sampling interval A, f ( x )  may in general maybe approximated by 
a straight line of slope m @ a s  shown in Figure lb. Thus the e r r o r  due to 
quantizing may be represented by 

EO EO E ( X )  = mx where - - < 5 - rn 

The mean square e r ro r  is then 

Eo’ 
E 2 ( x ) d x  = 3 

E o / m  
2L 2EO I””” Eo’ 

E 2 ( x ) d x  = 3 
E o / m  

2L 2EO I””” 
for each data point. The rms e r r o r  voltage is then f (O)/K 6, hence, the signal 
to noise ratio in the interferogram for digitizing noise alone is 

(g) = 1 .732  x 2k . 
D 

Another scheme for quantizing the interferogram is to quantize points less 
than a certain percentage of full scale to  2k and use a coarser quantization for  
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- the remaining points. For instance, Nimbus B quantizes the points of the inter- 
ferogram that are less than 10% of the maximum to 256 levels. The remaining 
points a r e  then divided by 10 and quantized, the operation being recorded by one 
bit of the telemetry data word. The mean square noise due to this is .. 

where y is the percentage of total points in the interferogram that are  digitized 
with 2E0' as the step size. The coarse quantization step size is E , .  Since 

the r m s  noise becomes 

and the signal to noise ratio due to digitizing is 

1.732 * 2k = (!?)I i w  D 

where the denominator is referred to as the increase factor. Since y and p are  
always less  than one, an increase in S/N ratio results with the same number of 
bits. A s  an example if 90% of the words a re  less than 10% of the maximum value 
we have an increase of a factor of 3 over equation (12). Figure 2 shows a plot 
of the increase factor a s  a function of p. 
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IV. TEST RESULTS 

A model spectrum 0 consisting of emission and absorption lines was used 
r’ 

to  generate a symmetric interferogram which was then quantized to  different 
levels and retransformed. Figure 3a shows the correct spectrum; Figures 3b-3d 
show the spectrum of interferograms normalized to  256, 1024, and 2048 levels 
(k = 8, 10, 11); Figure 3e shows the spectrum computed by applying the Nimbus B 
scheme. The noise in this spectrum lies somewhere between that of Figure 3c 
and 3d. A look at the interferogram revealed that yz.98. From Figure 2 the 
( S h )  increase is about 5 and corresponds to  2500 sampled levels. 

Figure 4 shows the total percentage of points falling below a given per- 
centage of the maximum voltage accepted by the IRIS system. The data is the 
average of 13 interferograms looking at the atmosphere obtained by the University 
of Michigan balloon experiment. An interesting feature of this is that the 
Nimbus B acquisition system is nearly optimal as about 98% of the data points 
a re  less than 10% of the maximum. 

V. SUMMARY 

The formula for determining the signal to noise ratio in the spectral domain 
is found as a function of the signal to noise ratio of the interferogram and is 
given by equation 8. A general technique for comparing various digitizing 
schemes is given, and it is found that the Nimbus B IRIS scheme is near the 
optimum. In general, with proper digitizing codes, quantization noise is not a 
serious consideration in the signal to noise ratio of the spectrum. 
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Figure 2-Signal to Noise increase factor ({m) vs p (fraction of f (0)). 
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Figure 3-Test spectrum with inteferogram quantizing effects. 
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